skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nienhuis, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a novel quantitative test of a 50‐year‐old hypothesis which asserts that river delta morphology is determined by the balance between river and marine influence. We define three metrics to capture the first‐order morphology of deltas (shoreline roughness, number of distributary channel mouths, and presence/absence of spits), and use a recently developed sediment flux framework to quantify the river‐marine influence. Through analysis of simulated and field deltas we quantitatively demonstrate the relationship between sediment flux balance and delta morphology and show that the flux balance accounts for at least 35% of the variance in the number of distributary channel mouths and 42% of the variance in the shoreline roughness for real‐world and simulated deltas. We identify a tipping point in the flux balance where wave influence halts distributary channel formation and show how this explains morphological transitions in real world deltas. 
    more » « less
  2. null (Ed.)
    Abstract. We investigate the controls upon the shape of freely extending spits using a one-contour-line model of shoreline evolution. In contrast to existing frameworks that suggest that spits are oriented in the direction of alongshore sediment transport and that wave refraction around the spit end is the primary cause of recurving, our results suggest that spit shoreline shapes are perhaps best understood as graded features arising from a complex interplay between distinct morphodynamic elements: the headland updrift of the spit, the erosive "neck" (which may be overwashing), and the depositional "hook". Between the neck and the hook lies a downdrift-migrating "fulcrum point" which tends towards a steady-state trajectory set by the angle of maximum alongshore sediment transport. Model results demonstrate that wave climate characteristics affect spit growth; however, we find that the rate of headland retreat exerts a dominant control on spit shape, orientation, and progradation rate. Interestingly, as a spit forms off of a headland, the rate of sediment input to the spit itself emerges through feedbacks with the downdrift spit end, and in many cases faster spit progradation may coincide with reduced sediment input to the spit itself. Furthermore, as the depositional hook rests entirely beyond the maximum in alongshore sediment transport, this shoreline reach is susceptible to high-angle wave instability throughout and, as a result, spit depositional signals may be highly autogenic. 
    more » « less